Matemática 2do año 2021-2022. 1er lapso.

 

Tema 1:

GUÍA PEDAGÓGICA DE EJERCICIOS (1ER LAPSO 2021 – 2022)

Estimados (as), estudiantes, daremos inicio al año escolar 2021 – 2022 con un ligero repaso de lo visto en parte del año escolar pasado; espero no tengan dificultad para resolver los ejercicios que preparamos para ustedes.

1.1) Suma de números enteros: (Propiedad Asociativa)

Para sumar dos números enteros se debe considerar las siguientes reglas:

1) Suma de números positivos:

Para sumar dos números positivos se procede a la suma aritmética de los valores absolutos de ambos, y al resultado obtenido se le antepone el signo (+). Así tenemos:

(+4) + (+2)= +6

Es importante tener presente que los números tienen su signo en el lado izquierdo, y a los números positivos, en algunas ocasiones se les obvia el signo, sobreentendiéndose su existencia.

Ejemplo: 4 + 2= 6 Acá se puede ver que, tanto el 4 como el 6 son números positivos, aunque no puedas ver su signo.

2) Suma de dos números negativos:

Para sumar dos números negativos se procede a la suma aritmética de los valores absolutos, y al resultado obtenido se le antepone el signo (-). Así tenemos:

(-4) + (-2)= -6

3) Suma de un número positivo y otro negativo:

Para sumar un número positivo y uno negativo se procede a hallar la diferencia (resta) de los valores absolutos de ambos números, y al resultado obtenido se le antepone el signo del número mayor, según su valor absoluto. Así tenemos:

a) (-4) + (2)= -2  El resultado es negativo porque (4) es mayor que (2), según su valor absoluto.

b) (6) + (-3)= 3  El resultado es positivo porque (6) es mayor que (3), según su valor absoluto.

El valor absoluto de un número cualquiera, no es otra cosa que el número mismo, sin tomar en cuenta el signo que lo antecede.

Ejemplos:

a) (-5) + (1)= El valor absoluto del 1er término es 5; y el valor absoluto del 2do término es 1; de modo que, 5 es mayor que 1, por tanto el resultado será:

(-5) + (1)= -4

 

Resolvamos, a manera de repaso, un ejercicio aplicando la propiedad asociativa:

 (-9) + (-3) + (5) =

[(-9) + (-3)] + (5) = (-9) + [(-3)+ (5)]

            (-12)  + (5) = (-9) + (2)

                      (-7) = (-7) ®

Si lees con detenimiento las reglas previas al ejercicio, entenderás cada uno de los pasos que dimos para dar con el resultado correcto del ejercicio que acabamos de resolver.

 

 

 

Asignación:

Resolver aplicando la propiedad asociativa:

a)

(8)

+

(-38)

+

(-58)

=

b)

(37)

+

(-18)

+

(-23)

=

c)

(52)

+

(-42)

+

(-28)

=

d)

(85)

+

(-53)

+

(-24)

=

e)

(48)

+

(-36)

+

(-51)

=

f)

(-46)

+

(63)

+

(-37)

=

g)

(-92)

+

(86)

+

(-16)

=

h)

(-74)

+

(77)

+

(-12)

=

i)

(-38)

+

(37)

+

(-22)

=

j)

(-46)

+

(72)

+

(-98)

=

ET1

Actividades resueltas que te servirán de repaso:

a) (10) + (-40) + (-60) =      

   [(10) + (-40)] + (-60) = (10) + [(-40) + (-60)]

                 (-30) +  (-60) = (10) +  (-100)

                                (-90) = (-90)

 

b) (48) + (-26) + (-13) =      

    [(48) + (-26)] + (-13) = (48) + [(-26) + (-13)]

                     (22) + (-13) = (48) +   (-39)

                                    (9) = (9)

 

c) (32) + (-72) + (-21) =      

   [(32) + (-72)] + (-21) = (32) + [(-72) + (-21)]

                (-40)  + (-21) = (32) +   (-93)

                      (-61) = (-61)

 

1.2) Multiplicación de números Enteros:

Para multiplicar números enteros se multiplican tanto los signos como los números.

Para multiplicar los signos se aplica la siguiente regla:

(+) . (+) = (+)

(-) . (-) = (+)   

(+) . (-) = (-)  

(-) . (+) = (-) 

El signo intermedio representado por un punto (.) significa multiplicación.

Ejemplo:

(-4) . (-3) + (-5) . (+7) + (-8) . (+6)= à Acá se multiplican el (1er y 2do); (3er y 4to); (5to y 6to) términos; según la regla dada.

    (+12)    +      (-35)     +     (-48) à En esta línea se suman los números con signos iguales; según regla dada.

    (+12)    +                (-83) à Sólo nos queda la suma de dos números con signos distintos, por tanto, restamos según regla dada.

                  (-71) ®

 

Asignación:

Ejercicios:

Resolver aplicando la propiedad asociativa:

a)

(-6) . (-7)

+

(-8) . (-9)

+

(-2) . (-3)

=

b)

(12) . (-9)

+

(3) . (-12)

+

(7) . (-4)

=

c)

(-7) . (9)

+

(-13) . (-5)

+

(9) . (-14)

=

d)

(8) . (-6)

+

(9) . (-14)

+

(-5) . (-12)

=

e)

(-5) . (-8)

+

(-7) . (-14)

+

(9) . (-8)

=

f)

(9) . (4)

+

(-10) . (7)

+

(-13) . (9)

=

g)

(-6) . (-6)

+

(-5) . (-9)

+

(8) . (-7)

=

h)

(4) . (-10)

+

(6) . (-8)

+

(-10) . (-5)

=

i)

(-1) . (5)

+

(-2) . (-6)

+

(4) . (-15)

=

j)

(7) . (-5)

+

(6) . (-10)

+

(-6) . (-4)

=

ET2

Actividades resueltas que te servirán de repaso:

a) (-2) . (-8)  +  (-15) . (-1)  +  (-8) . (-5)   =

         (16)        +        (15)       +     (40)

                     (31)                     +      (40)

                                (71) ®

 

b) (-3) . (-7)  +  (-9) . (-4)  +  (-6) . (-8)   =

         (21)     +    (36)             +     (48)

                   (57)                     +      (48)

                                (105) ®

c) (4) . (-8)  +  (-15) . (-8)  +  (9) . (-12)   =

         (-32)     +    (120)     +     (-108)

                      (88)               +    (-108)        

                                   (-20) ®

 

 

Importante:

§  Es necesario presentar el ejercicio completo, no sólo su resultado, de modo que, el docente vea el desarrollo total del mismo; destacando que, entregarás únicamente los ejercicios de los recuadros ET1 y ET2

§  La forma de entrega de cada una de las asignaciones deben acordarla con su respectivo (a) profesor (a) guía.

 

¡Éxito!

Comentarios

Entradas populares de este blog

Arte y Patrimoio 1er año.2021-2022. 1er lapso

Planificación del III Lapso 2020-2021 GHC 2do año.

Planificación Matematica 1er año 2do momento 2020-2021. Ambos turnos.